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Synopsis 

Formulas are derived relating the deformation resulting from the application of a force f to 
the poles of a sphere of uniform modulus. When the force f is applied, the poles, originally a 
distance 2 R* apart, now are a distance 2 R, apart. Also, the diameter of the sphere at its equator 
is increased from 2R* to a new value 2R,. For an ideal rubbery material with a shear modulus of 
G, the force is related to the change in equatorial diameter by 

Thus, measurement of the increase in relative radius a t  the equator as a function of force applied 
at the poles yields the modulus directly. The change in R, also can be related to G, but a numerical 
integration is required. Equations can also be derived relating modulus to dimensional changes 
when Hooke's law is used in place of ideal rubber elasticity. 

INTRODUCTION 

The modulus of a material can be measured using a variety of physical ar- 
rangements.'*2 According to the classical model of an ideal rubber based on 
statistical mechanics, the shear modulus G ,  is identified as the product NRT 
where N is the moles of chains per unit volume, T is the absolute temperature, 
and R is the gas constant in appropriate 

For an ideal rubber in uniaxial tension or compression, the stress varies with 
change in length in a nonlinear fashion. For the case of compression, assuming 
that the volume does not change on stressing, one obtains: 

where the stress uc is the compressional force per unit unstrained, original 
cross-sectional area, and a the ratio of stressed to unstressed length, is less 
than one. On the other hand, for the case of simple shear, the shear stress is 
linear in the shear strain. Given the freedom to choose any geometry, shearing 
often is preferred since the response is linear and the shearing motion can be 
incorporated into a torsion pendulum or some other convenient apparatus. 
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CHANGE IN EQUATORIAL DIAMETER 
OF A SPHERE ON COMPRESSION 

Freedom of geometry is not always available. Consider the case of spherical 
samples, for example. To test the material in compression as a cylinder or in 
shear necessarily involves sacrificing the sample. The sphere has to be sliced 
up to obtain a cylinder or a slab with parallel surfaces. Uniform sections are 
difficult to produce. The very act of cutting or grinding may alter the physical 
properties. Most importantly, the sample is destroyed. Also, when the spheres 
are very small, cutting becomes impractical. If the sphere is compressed between 
two parallel plates and deformation is monitored as a function of force, the 
sample remains intact. An equation can be derived relating the force-defor- 
mation behavior to G. 

Consider a sphere made of a material for which eq. (1) applies. First, consider 
a disc at the center (equator) of thickness (dy*  ) e  and radius R * (Fig. 1 ) . When 
the sphere is subjected to a compressive force f at  the poles, the same force is 
transmitted through every layer of the sphere parallel to the equator. The 
thickness of the disc responds by changing from ( d y *  )e to ( d y )  in accordance 
with eq. ( 1) 

where a, is the strain ratio at the equator. We define a compressive stress uc 
at the equator based on the original undeformed area: 

uc = f / ( ? r R * ' )  ( 3 )  

The stress at the equator does not change when the sample is deformed since 
it is based on the original area. However, because the volume of the disc remains 
constant, the deformed disc has a new radius Re, where 

And, from eq. ( Z ) ,  

. f  

Fig. 1. The compressive force f deforms a disc of material at the equator decreasing the 
thickness (dy*) .  by a factor a, and increasing the radius R* by a factor of R./R* = (ae)-'" as 
the result of the total volume remaining constant. 
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Combining eq. (5) with eqs. ( 1 )  and ( 3 )  gives the relationship between force 
and change in equatorial radius (or diameter) : 

Measurement of the relative increase in radius ( R / R * ) ,  at  the equator as a 
function of f yields the modulus G directly. 

CHANGE IN TRANSPOLAR DISTANCE 
OF A SPHERE ON COMPRESSION 

When a sphere is compressed, the distance between the poles changes much 
more than the equatorial diameter. This makes it a more sensitive measure of 
strain. A set of equations can be derived relating the force to the change in 
transpolar distance. Consider a disc of material with thickness dy* at a vertical 
distance y* from the center of the sphere (Fig. 2).  The radius of the disc, x*, 
may be obtained from: 

The compressive stress at y* is 

and the local strain at y* is 

The vertical distance from the center of the sphere to the north pole R, is 

dy = ady* 
I I f  

Fig. 2. The compressive force f deforms a disc of material a distance y* away from the equator. 
The sphere is deformed into an oval cross-section with a transpolar distance of 2R,. p is defined 
as R,/R*. 
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Fig. 3. The local vertical strain is a function of the original vertical displacement from the 
center of the sphere. 6 = 0 corresponds to the center of the sphere, and 6 = 1 corresponds to the 
polar cap. Q is the dimensionless stress at the equator. 

R, = dy = SOR* a dy* 

Because of spherical symmetry, the bottom half of the sphere (down to the 
south pole) is deformed identically, so that we need concern ourselves only 
with the top half of the sphere. The ratio of deformed diameter to original 
diameter is, of course, the same as the ratio of deformed radius to original 
radius. Both the change in total transpolar distance and the vertical position 
measured from the center of the sphere can be put in nondimensional form by 
normalizing with respect to the original radius: 

Then eq. (10) becomes simply 

B = J' a* d 4  
0 

Furthermore, using the equatorial stress a, from eq. (2)  , let 

We can rewrite eq. ( 1 )  in terms of the equatorial compressive stress as 
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Fig. 4. Increasing dimensionless stress Q compresses the sample as seen by its effect on the 

dimensionless transpolar distance p = R,/R*.  ( A )  The rubber elasticity model, eqs. (13) and (18); 
(B)  Hooke's law, eq. (24) ; (C)  Coalescence model, eq. (25), calculated only for the interval 0.9 
< p < 1.0. Also shown for the rubber elasticity model are the response of equatorial deformation 
R*/ Re and its square, the equatorial strain, a<. 

At any latitude corresponding orginally to y* (or 6) , the local stress and local 
strain are related by: 

Also: 

Combining eq. (16) with (14) and (15) yields: 

Thus, for each value of Q (the normalized equatorial stress), the local defor- 
mation, a,, a t  4 is a unique function of 4 (Fig. 3). Local strain is always 
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TABLE I 
Calculated Values from Numerical Integration of Rubber Elasticity Model 

Equatorial radial strain, Transpolar radial ratio, Normalized equatorial stress, 
a,, (R/R*)Z P = (R,/R*) Q [eq. (15)l 

0.50 
0.60 
0.70 
0.80 
0.90 
0.95 
0.96 
0.97 
0.98 
0.99 
1.00 

0.3982 
0.4858 
0.5803 
0.6858 
0.8109 
0.8882 
0.9055 
0.9244 
0.9450 
0.9677 
1.0000 

3.500 
2.178 
1.341 
0.763 
0.335 
0.158 
0.125 
0.0928 
0.0612 
0.0303 
0 

greatest (a is smallest) at the polar surface ( 4  = 1 ) for any value of Q greater 
than zero. 

Numerical integration according to eq. ( 12) (the area under each a, curve 
of Fig. 3)  yields p which can be displayed as function of Q (Fig. 4, Table I ) .  In 
the same figure, Q is shown as a function of the equatorial radius change, 
( R / R * ) ,  and of the square of that change, the equatorial strain, tie. It can be 
seen that when the sphere has been compressed to half its original diameter, 
p = 0.5, the strain at the equator is only 0.62, corresponding to an increase in 
the diameter of only 1.27. 

The shape of the deformed sphere can be calculated from the local values of 
x and y .  The value of y can be obtained, by analogy to eq. (12) ,  from the 
relationship 

1 .o 

y/R* 

0.5 

0 
0 0.5 x / ~ *  1.0 

Fig. 5. Shape of a sphere, A, before, and B, after deforming to a Q value of 1.341. 
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0 1.5 

Fig. 6. Coordinates of deformed oblate spheroid surface plotted as squares. An ellipse would 
yield a straight line. 

For x ,  we can use eq. (16) to express the local strain, am, or ( x * / x ) *  as 

Elimination of (1 - 4’) between eqs. (19) and (17) gives 

For the case where Q = 1.341 (curve c in Fig. 3 ) ,  the x ,  y profile has been 
calculated (Fig. 5 ) .  That this is not an ellipse is most clearly seen by a plot of 
y 2  vs. x 2  which would be a straight line for an ellipse (Fig. 6 ) .  The oblate 
spheroid is observed in experiments with rubbery spheres. 

COMPRESSION OF A LARGE SPHERE 

A toy “superball” (“Teeny Bouncer,” Imperial Toy Corp., Los Angeles, CA) 
was compressed using an Instron Testing Machine. The polymer in the ball 
presumably is a cross-linked polybutadiene. A compression load cell was 
mounted at  the base of the machine and equipped with a flat plate. A tiny pin 
in the center of the plate kept the ball from slipping away. The cross-arm of 
the machine, also fitted with a plate, descended upon the ball at a speed of 
0.50-in. (1.22 cm)/min. The original diameter of the ball was 1.00-in. (2.54 
cm) . Several balls gave very similar results. The compression was carried out 
to @ = 0.50 and reversed several times. At the maximum compression the equa- 
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Fig. 7. Compression of “super-ball” in an Instron machine requires stout force. The circles 
represent the compression of a dry ball, the triangles are for a toluene-swollen ball. The solid line 
represents the rubber elasticity model fitted to the dry ball data. The dashed line is the fit by the 
Hooke’s law model. 

torial diameter had increased by a factor of 1.24 f 0.03. There was no discernible 
hysteresis. Plotted as logarithm of force versus distance (Fig. 7 ) ,  the experi- 
mental data are fitted by the theoretical Q,P line quite well. The force f l  required 
to achieve P = 0.64 (where Q = 1-00) was used to calculate a modulus of 590 
kPa (85 psi) from 

One of the balls was equilibrated to a constant swollen volume over a period 
of two weeks in toluene at 23°C. The swollen diameter was 1.625 times the 
original. The volume fraction of polymer in the swollen state, up was 0.233. At 
values of /3 greater than 0.65, the swollen ball could be squeezed with no dis- 
cernible hysteresis (also shown in Fig. 7). However, at ,6 = 0.63, the ball exploded 
into many fragments. Using the formulas given by F l ~ r y , ~  the tensile force f 
required to elongate an ideal rubber is given by 

where A0 is the unswollen cross-sectional area, N is the moles of polymer chains 
per unit volume in the unswollen sample, R and T are the gas constant and 
absolute temperature, and a is the ratio of stretched to unstretched length in 
the swollen state for a sample having a volume fraction of polymer in the 
swollen gel equal to u2.  The formula applies to dry or swollen rubber. Thus, if 
a dry sample ( u p  = 1 ) is elongated from a length of 10 cm to a length of 15 cm, 
then a = 1.5, and the force required is 
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Force, 

mg 
50 

20 

10 

fd = Ao(NRT)o 1.056 (23) 

If the same sample is placed in a solvent and swells isotropically to 8 times its 
original volume, u2 is 0.125 and the new unstressed length is 20 cm. When the 
swollen sample is stretched to a length of 30 cm, a is 1.5 (based on swollen 
dimensions) and the force fs  should be 

fs = A o ( N R T ) o  1 . 0 5 6 ( ~ ~ ) - ” ~  (24) 

Thus f s / f d  = ( ~ 2 ) - l ’ ~  = 2.0. 
When the ball which was swollen in toluene was deformed, the force required 

was only slightly greater than that for the unswollen ball at the same fractional 
deformation. The prediction of eq. (22) is that the swollen sample should have 
required a force 1.625 times that for the unswollen sample. The reason for the 
discrepancy may lie in the fact that the chains in the superball are not usually 
in a random state when crosslinking occurs, since the pressure is often quite 
high. Therefore, the swelling in toluene may not be a straightforward test of 
eq. (22). 

- 

- 

r\ 

- 

COMPRESSION OF SMALL GEL SPHERES 

Cross-linked polyacrylamide gels were made by injecting droplets of aqueous 
monomer solutions into a continuous organic phase.5 Individual gel spheres 
were compressed between Teflon@ plates. The force was applied from the arm 
of an analytical balance and the deformation observed using a microscope fitted 
with an eyepiece micrometer. A representative result (Fig. 8) yields a modulus 
of 4.2 kPa. It is gratifying to see that the equation based on ideal rubber elasticity 
is as equally applicable to microscopic spheres as it is to macroscopic balls. 

OTHER MATHEMATICAL MODELS 

A much simpler mechanical model than eq. ( 1 ) is Hooke’s law (with constant 
volume) which can be expressed as: 

I I I I 

0.45 0.35 0 . 2 5  

Transpolar distance, mm 
Fig. 8. Compression of a microscopic polyacrylamide gel particle. Masses in the milligram 

range are used to compress the particle which had an undeformed diameter of 0.441 mm. The solid 
line is the rubber elasticity model. The dashed line is the Hooke’s law model. 
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where G = E / 3  and E is Young’s modulus in compression. A t  the equator, a, 
again is simply ( R * /  R):.  Equation ( 17) is replaced by an equivalent expression 
through the same sequence of substitutions so that: 

Q = 3 ( 1 - 4 2 ) ( 1 - a ) 4 = 3 ( 1 - a ) ,  (26) 

An analytical solution is possible for P in this case. A complication in the 
integration step is that the compression ratio a has a lower limit of zero and 
cannot become negative. This means that the integration for P proceeds to 4 
= 4,,, rather than 1 where 

Then integration according to eq. ( 12) yields: 

The Q,P plot for the Hooke’s law case is illustrated in Figure 4. The experimental 
data are not very compatible with eq. (28). Of course, at very low deformations 
( P  between 0.8 and 1 ) , the simplicity of Hooke’s law makes it easy to use and 
quite satisfactory from the standpoint of goodness of fit. The modulus values 
used to fit Hooke’s law to the data of Figures 7 and 8 are about 1.5 times the 
rubber elasticity values ( Table I1 ) . 

Another approach has been used by workers who model the coalescence 
phenomena of latex particles under the influence of surface tension.6 The end 
result is confined to values of P between 0.9 and 1 by the assumptions of the 
derivation. One such equation6 can be put in the form of: 

Q =  K ( l  - P ) ( 1  - P2)1’2 (29) 

With K = 2.5, the result is very much like Hooke’s law (Fig. 7) .  
Finally, although restricted to small values of strain, the analysis of stress 

distribution in an epoxy sphere can shed some light on the actual variation 
within a sphere when it is subjected to uniaxial compre~sion.~ The material 
used, however, must be in the glassy state so that standard photoelastic tech- 
niques can be used at small strains to estimate the stress on “frozen” sections 
cut from the sphere. 

TABLE I1 
Shear Moduli Derived from Experimental Data 

Mate r i a 1 G (Hooke’s law) G (Elasticity theory) 

Rubber sphere (Fig. 7) 
Gel particle (Fig. 8) 

840.0 kPa 
6.3 kPa 

590.0 kPa 
4.2 kPa 
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CONCLUSIONS 

The measurement of modulus by squeezing a sphere between parallel plates 
is a straightforward experimental approach which is applicable to rubbery sam- 
ples of any size. While the equations derived on the basis of ideal rubber elasticity 
are quite satisfactory, they are restricted to materials which are crosslinked 
and amorphous. In general, the transpolar distance will be the more sensitive 
dimension to characterize deformation since it changes more than the equatorial 
diameter. The use of Hooke’s law in place of ideal rubber elasticity is adequate 
when spheres are compressed only to about 0.8 the original transpolar distance. 
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